General

Atheris

>

data/skills-content.json#security-atheris

Atheris

Atheris is a coverage-guided Python fuzzer built on libFuzzer. It enables fuzzing of both pure Python code and Python C extensions with integrated AddressSanitizer support for detecting memory corruption issues.

When to Use

Fuzzer Best For Complexity
Atheris Python code and C extensions Low-Medium
Hypothesis Property-based testing Low
python-afl AFL-style fuzzing Medium

Choose Atheris when:

  • Fuzzing pure Python code with coverage guidance
  • Testing Python C extensions for memory corruption
  • Integration with libFuzzer ecosystem is desired
  • AddressSanitizer support is needed

Quick Start

import sys
import atheris

@atheris.instrument_func
def test_one_input(data: bytes):
    if len(data) == 4:
        if data[0] == 0x46:  # "F"
            if data[1] == 0x55:  # "U"
                if data[2] == 0x5A:  # "Z"
                    if data[3] == 0x5A:  # "Z"
                        raise RuntimeError("You caught me")

def main():
    atheris.Setup(sys.argv, test_one_input)
    atheris.Fuzz()

if __name__ == "__main__":
    main()

Run:

python fuzz.py

Installation

Atheris supports 32-bit and 64-bit Linux, and macOS. We recommend fuzzing on Linux because it's simpler to manage and often faster.

Prerequisites

Linux/macOS

uv pip install atheris

Docker Environment (Recommended)

For a fully operational Linux environment with all dependencies configured:

# https://hub.docker.com/_/python
ARG PYTHON_VERSION=3.11

FROM python:$PYTHON_VERSION-slim-bookworm

RUN python --version

RUN apt update && apt install -y \
    ca-certificates \
    wget \
    && rm -rf /var/lib/apt/lists/*

# LLVM builds version 15-19 for Debian 12 (Bookworm)
# https://apt.llvm.org/bookworm/dists/
ARG LLVM_VERSION=19

RUN echo "deb http://apt.llvm.org/bookworm/ llvm-toolchain-bookworm-$LLVM_VERSION main" > /etc/apt/sources.list.d/llvm.list
RUN echo "deb-src http://apt.llvm.org/bookworm/ llvm-toolchain-bookworm-$LLVM_VERSION main" >> /etc/apt/sources.list.d/llvm.list
RUN wget -qO- https://apt.llvm.org/llvm-snapshot.gpg.key > /etc/apt/trusted.gpg.d/apt.llvm.org.asc

RUN apt update && apt install -y \
    build-essential \
    clang-$LLVM_VERSION \
    && rm -rf /var/lib/apt/lists/*

ENV APP_DIR "/app"
RUN mkdir $APP_DIR
WORKDIR $APP_DIR

ENV VIRTUAL_ENV "/opt/venv"
RUN python -m venv $VIRTUAL_ENV
ENV PATH "$VIRTUAL_ENV/bin:$PATH"

# https://github.com/google/atheris/blob/master/native_extension_fuzzing.md#step-1-compiling-your-extension
ENV CC="clang-$LLVM_VERSION"
ENV CFLAGS "-fsanitize=address,fuzzer-no-link"
ENV CXX="clang++-$LLVM_VERSION"
ENV CXXFLAGS "-fsanitize=address,fuzzer-no-link"
ENV LDSHARED="clang-$LLVM_VERSION -shared"
ENV LDSHAREDXX="clang++-$LLVM_VERSION -shared"
ENV ASAN_SYMBOLIZER_PATH="/usr/bin/llvm-symbolizer-$LLVM_VERSION"

# Allow Atheris to find fuzzer sanitizer shared libs
# https://github.com/google/atheris#building-from-source
RUN LIBFUZZER_LIB=$($CC -print-file-name=libclang_rt.fuzzer_no_main-$(uname -m).a) \
    python -m pip install --no-binary atheris atheris

# https://github.com/google/atheris/blob/master/native_extension_fuzzing.md#option-a-sanitizerlibfuzzer-preloads
ENV LD_PRELOAD "$VIRTUAL_ENV/lib/python3.11/site-packages/asan_with_fuzzer.so"

# 1. Skip memory allocation failures for now, they are common, and low impact (DoS)
# 2. https://github.com/google/atheris/blob/master/native_extension_fuzzing.md#leak-detection
ENV ASAN_OPTIONS "allocator_may_return_null=1,detect_leaks=0"

CMD ["/bin/bash"]

Build and run:

docker build -t atheris .
docker run -it atheris

Verification

python -c "import atheris; print(atheris.__version__)"

Writing a Harness

Harness Structure for Pure Python

import sys
import atheris

@atheris.instrument_func
def test_one_input(data: bytes):
    """
    Fuzzing entry point. Called with random byte sequences.

    Args:
        data: Random bytes generated by the fuzzer
    """
    # Add input validation if needed
    if len(data) < 1:
        return

    # Call your target function
    try:
        your_target_function(data)
    except ValueError:
        # Expected exceptions should be caught
        pass
    # Let unexpected exceptions crash (that's what we're looking for!)

def main():
    atheris.Setup(sys.argv, test_one_input)
    atheris.Fuzz()

if __name__ == "__main__":
    main()

Harness Rules

Do Don't
Use @atheris.instrument_func for coverage Forget to instrument target code
Catch expected exceptions Catch all exceptions indiscriminately
Use atheris.instrument_imports() for libraries Import modules after atheris.Setup()
Keep harness deterministic Use randomness or time-based behavior

See Also: For detailed harness writing techniques, patterns for handling complex inputs, and advanced strategies, see the fuzz-harness-writing technique skill.

Fuzzing Pure Python Code

For fuzzing broader parts of an application or library, use instrumentation functions:

import atheris
with atheris.instrument_imports():
    import your_module
    from another_module import target_function

def test_one_input(data: bytes):
    target_function(data)

atheris.Setup(sys.argv, test_one_input)
atheris.Fuzz()

Instrumentation Options:

  • atheris.instrument_func - Decorator for single function instrumentation
  • atheris.instrument_imports() - Context manager for instrumenting all imported modules
  • atheris.instrument_all() - Instrument all Python code system-wide

Fuzzing Python C Extensions

Python C extensions require compilation with specific flags for instrumentation and sanitizer support.

Environment Configuration

If using the provided Dockerfile, these are already configured. For local setup:

export CC="clang"
export CFLAGS="-fsanitize=address,fuzzer-no-link"
export CXX="clang++"
export CXXFLAGS="-fsanitize=address,fuzzer-no-link"
export LDSHARED="clang -shared"

Example: Fuzzing cbor2

Install the extension from source:

CBOR2_BUILD_C_EXTENSION=1 python -m pip install --no-binary cbor2 cbor2==5.6.4

The --no-binary flag ensures the C extension is compiled locally with instrumentation.

Create cbor2-fuzz.py:

import sys
import atheris

# _cbor2 ensures the C library is imported
from _cbor2 import loads

def test_one_input(data: bytes):
    try:
        loads(data)
    except Exception:
        # We're searching for memory corruption, not Python exceptions
        pass

def main():
    atheris.Setup(sys.argv, test_one_input)
    atheris.Fuzz()

if __name__ == "__main__":
    main()

Run:

python cbor2-fuzz.py

Important: When running locally (not in Docker), you must set LD_PRELOAD manually.

Corpus Management

Creating Initial Corpus

mkdir corpus
# Add seed inputs
echo "test data" > corpus/seed1
echo '{"key": "value"}' > corpus/seed2

Run with corpus:

python fuzz.py corpus/

Corpus Minimization

Atheris inherits corpus minimization from libFuzzer:

python fuzz.py -merge=1 new_corpus/ old_corpus/

See Also: For corpus creation strategies, dictionaries, and seed selection, see the fuzzing-corpus technique skill.

Running Campaigns

Basic Run

python fuzz.py

With Corpus Directory

python fuzz.py corpus/

Common Options

# Run for 10 minutes
python fuzz.py -max_total_time=600

# Limit input size
python fuzz.py -max_len=1024

# Run with multiple workers
python fuzz.py -workers=4 -jobs=4

Interpreting Output

Output Meaning
NEW cov: X Found new coverage, corpus expanded
pulse cov: X Periodic status update
exec/s: X Executions per second (throughput)
corp: X/Yb Corpus size: X inputs, Y bytes total
ERROR: libFuzzer Crash detected

Sanitizer Integration

AddressSanitizer (ASan)

AddressSanitizer is automatically integrated when using the provided Docker environment or when compiling with appropriate flags.

For local setup:

export CFLAGS="-fsanitize=address,fuzzer-no-link"
export CXXFLAGS="-fsanitize=address,fuzzer-no-link"

Configure ASan behavior:

export ASAN_OPTIONS="allocator_may_return_null=1,detect_leaks=0"

LD_PRELOAD Configuration

For native extension fuzzing:

export LD_PRELOAD="$(python -c 'import atheris; import os; print(os.path.join(os.path.dirname(atheris.__file__), "asan_with_fuzzer.so"))')"

See Also: For detailed sanitizer configuration, common issues, and advanced flags, see the address-sanitizer and undefined-behavior-sanitizer technique skills.

Common Sanitizer Issues

Issue Solution
LD_PRELOAD not set Export LD_PRELOAD to point to asan_with_fuzzer.so
Memory allocation failures Set ASAN_OPTIONS=allocator_may_return_null=1
Leak detection noise Set ASAN_OPTIONS=detect_leaks=0
Missing symbolizer Set ASAN_SYMBOLIZER_PATH to llvm-symbolizer

Advanced Usage

Tips and Tricks

Tip Why It Helps
Use atheris.instrument_imports() early Ensures all imports are instrumented for coverage
Start with small max_len Faster initial fuzzing, gradually increase
Use dictionaries for structured formats Helps fuzzer understand format tokens
Run multiple parallel instances Better coverage exploration

Custom Instrumentation

Fine-tune what gets instrumented:

import atheris

# Instrument only specific modules
with atheris.instrument_imports():
    import target_module
# Don't instrument test harness code

def test_one_input(data: bytes):
    target_module.parse(data)

Performance Tuning

Setting Impact
-max_len=N Smaller values = faster execution
-workers=N -jobs=N Parallel fuzzing for faster coverage
ASAN_OPTIONS=fast_unwind_on_malloc=0 Better stack traces, slower execution

UndefinedBehaviorSanitizer (UBSan)

Add UBSan to catch additional bugs:

export CFLAGS="-fsanitize=address,undefined,fuzzer-no-link"
export CXXFLAGS="-fsanitize=address,undefined,fuzzer-no-link"

Note: Modify flags in Dockerfile if using containerized setup.

Real-World Examples

Example: Pure Python Parser

import sys
import atheris
import json

@atheris.instrument_func
def test_one_input(data: bytes):
    try:
        # Fuzz Python's JSON parser
        json.loads(data.decode('utf-8', errors='ignore'))
    except (ValueError, UnicodeDecodeError):
        pass

def main():
    atheris.Setup(sys.argv, test_one_input)
    atheris.Fuzz()

if __name__ == "__main__":
    main()

Example: HTTP Request Parsing

import sys
import atheris

with atheris.instrument_imports():
    from urllib3 import HTTPResponse
    from io import BytesIO

def test_one_input(data: bytes):
    try:
        # Fuzz HTTP response parsing
        fake_response = HTTPResponse(
            body=BytesIO(data),
            headers={},
            preload_content=False
        )
        fake_response.read()
    except Exception:
        pass

def main():
    atheris.Setup(sys.argv, test_one_input)
    atheris.Fuzz()

if __name__ == "__main__":
    main()

Troubleshooting

Problem Cause Solution
No coverage increase Poor seed corpus or target not instrumented Add better seeds, verify instrument_imports()
Slow execution ASan overhead or large inputs Reduce max_len, use ASAN_OPTIONS=fast_unwind_on_malloc=1
Import errors Modules imported before instrumentation Move imports inside instrument_imports() context
Segfault without ASan output Missing LD_PRELOAD Set LD_PRELOAD to asan_with_fuzzer.so path
Build failures Wrong compiler or missing flags Verify CC, CFLAGS, and clang version

Related Skills

Technique Skills

Skill Use Case
fuzz-harness-writing Detailed guidance on writing effective harnesses
address-sanitizer Memory error detection during fuzzing
undefined-behavior-sanitizer Catching undefined behavior in C extensions
coverage-analysis Measuring and improving code coverage
fuzzing-corpus Building and managing seed corpora

Related Fuzzers

Skill When to Consider
hypothesis Property-based testing with type-aware generation
python-afl AFL-style fuzzing for Python when Atheris isn't available

Resources

Key External Resources

Atheris GitHub Repository Official repository with installation instructions, examples, and documentation for fuzzing both pure Python and native extensions.

Native Extension Fuzzing Guide Comprehensive guide covering compilation flags, LD_PRELOAD setup, sanitizer configuration, and troubleshooting for Python C extensions.

Continuously Fuzzing Python C Extensions Trail of Bits blog post covering CI/CD integration, ClusterFuzzLite setup, and real-world examples of fuzzing Python C extensions in continuous integration pipelines.

ClusterFuzzLite Python Integration Guide for integrating Atheris fuzzing into CI/CD pipelines using ClusterFuzzLite for automated continuous fuzzing.

Video Resources

Videos and tutorials are available in the main Atheris documentation and libFuzzer resources.

Raw SKILL.md
---
name: Atheris
description: >
---

# Atheris

Atheris is a coverage-guided Python fuzzer built on libFuzzer. It enables fuzzing of both pure Python code and Python C extensions with integrated AddressSanitizer support for detecting memory corruption issues.

## When to Use

| Fuzzer | Best For | Complexity |
|--------|----------|------------|
| Atheris | Python code and C extensions | Low-Medium |
| Hypothesis | Property-based testing | Low |
| python-afl | AFL-style fuzzing | Medium |

**Choose Atheris when:**
- Fuzzing pure Python code with coverage guidance
- Testing Python C extensions for memory corruption
- Integration with libFuzzer ecosystem is desired
- AddressSanitizer support is needed

## Quick Start

```python
import sys
import atheris

@atheris.instrument_func
def test_one_input(data: bytes):
    if len(data) == 4:
        if data[0] == 0x46:  # "F"
            if data[1] == 0x55:  # "U"
                if data[2] == 0x5A:  # "Z"
                    if data[3] == 0x5A:  # "Z"
                        raise RuntimeError("You caught me")

def main():
    atheris.Setup(sys.argv, test_one_input)
    atheris.Fuzz()

if __name__ == "__main__":
    main()
```

Run:
```bash
python fuzz.py
```

## Installation

Atheris supports 32-bit and 64-bit Linux, and macOS. We recommend fuzzing on Linux because it's simpler to manage and often faster.

### Prerequisites

- Python 3.7 or later
- Recent version of clang (preferably [latest release](https://github.com/llvm/llvm-project/releases))
- For Docker users: [Docker Desktop](https://www.docker.com/products/docker-desktop/)

### Linux/macOS

```bash
uv pip install atheris
```

### Docker Environment (Recommended)

For a fully operational Linux environment with all dependencies configured:

```dockerfile
# https://hub.docker.com/_/python
ARG PYTHON_VERSION=3.11

FROM python:$PYTHON_VERSION-slim-bookworm

RUN python --version

RUN apt update && apt install -y \
    ca-certificates \
    wget \
    && rm -rf /var/lib/apt/lists/*

# LLVM builds version 15-19 for Debian 12 (Bookworm)
# https://apt.llvm.org/bookworm/dists/
ARG LLVM_VERSION=19

RUN echo "deb http://apt.llvm.org/bookworm/ llvm-toolchain-bookworm-$LLVM_VERSION main" > /etc/apt/sources.list.d/llvm.list
RUN echo "deb-src http://apt.llvm.org/bookworm/ llvm-toolchain-bookworm-$LLVM_VERSION main" >> /etc/apt/sources.list.d/llvm.list
RUN wget -qO- https://apt.llvm.org/llvm-snapshot.gpg.key > /etc/apt/trusted.gpg.d/apt.llvm.org.asc

RUN apt update && apt install -y \
    build-essential \
    clang-$LLVM_VERSION \
    && rm -rf /var/lib/apt/lists/*

ENV APP_DIR "/app"
RUN mkdir $APP_DIR
WORKDIR $APP_DIR

ENV VIRTUAL_ENV "/opt/venv"
RUN python -m venv $VIRTUAL_ENV
ENV PATH "$VIRTUAL_ENV/bin:$PATH"

# https://github.com/google/atheris/blob/master/native_extension_fuzzing.md#step-1-compiling-your-extension
ENV CC="clang-$LLVM_VERSION"
ENV CFLAGS "-fsanitize=address,fuzzer-no-link"
ENV CXX="clang++-$LLVM_VERSION"
ENV CXXFLAGS "-fsanitize=address,fuzzer-no-link"
ENV LDSHARED="clang-$LLVM_VERSION -shared"
ENV LDSHAREDXX="clang++-$LLVM_VERSION -shared"
ENV ASAN_SYMBOLIZER_PATH="/usr/bin/llvm-symbolizer-$LLVM_VERSION"

# Allow Atheris to find fuzzer sanitizer shared libs
# https://github.com/google/atheris#building-from-source
RUN LIBFUZZER_LIB=$($CC -print-file-name=libclang_rt.fuzzer_no_main-$(uname -m).a) \
    python -m pip install --no-binary atheris atheris

# https://github.com/google/atheris/blob/master/native_extension_fuzzing.md#option-a-sanitizerlibfuzzer-preloads
ENV LD_PRELOAD "$VIRTUAL_ENV/lib/python3.11/site-packages/asan_with_fuzzer.so"

# 1. Skip memory allocation failures for now, they are common, and low impact (DoS)
# 2. https://github.com/google/atheris/blob/master/native_extension_fuzzing.md#leak-detection
ENV ASAN_OPTIONS "allocator_may_return_null=1,detect_leaks=0"

CMD ["/bin/bash"]
```

Build and run:
```bash
docker build -t atheris .
docker run -it atheris
```

### Verification

```bash
python -c "import atheris; print(atheris.__version__)"
```

## Writing a Harness

### Harness Structure for Pure Python

```python
import sys
import atheris

@atheris.instrument_func
def test_one_input(data: bytes):
    """
    Fuzzing entry point. Called with random byte sequences.

    Args:
        data: Random bytes generated by the fuzzer
    """
    # Add input validation if needed
    if len(data) < 1:
        return

    # Call your target function
    try:
        your_target_function(data)
    except ValueError:
        # Expected exceptions should be caught
        pass
    # Let unexpected exceptions crash (that's what we're looking for!)

def main():
    atheris.Setup(sys.argv, test_one_input)
    atheris.Fuzz()

if __name__ == "__main__":
    main()
```

### Harness Rules

| Do | Don't |
|----|-------|
| Use `@atheris.instrument_func` for coverage | Forget to instrument target code |
| Catch expected exceptions | Catch all exceptions indiscriminately |
| Use `atheris.instrument_imports()` for libraries | Import modules after `atheris.Setup()` |
| Keep harness deterministic | Use randomness or time-based behavior |

> **See Also:** For detailed harness writing techniques, patterns for handling complex inputs,
> and advanced strategies, see the **fuzz-harness-writing** technique skill.

## Fuzzing Pure Python Code

For fuzzing broader parts of an application or library, use instrumentation functions:

```python
import atheris
with atheris.instrument_imports():
    import your_module
    from another_module import target_function

def test_one_input(data: bytes):
    target_function(data)

atheris.Setup(sys.argv, test_one_input)
atheris.Fuzz()
```

**Instrumentation Options:**
- `atheris.instrument_func` - Decorator for single function instrumentation
- `atheris.instrument_imports()` - Context manager for instrumenting all imported modules
- `atheris.instrument_all()` - Instrument all Python code system-wide

## Fuzzing Python C Extensions

Python C extensions require compilation with specific flags for instrumentation and sanitizer support.

### Environment Configuration

If using the provided Dockerfile, these are already configured. For local setup:

```bash
export CC="clang"
export CFLAGS="-fsanitize=address,fuzzer-no-link"
export CXX="clang++"
export CXXFLAGS="-fsanitize=address,fuzzer-no-link"
export LDSHARED="clang -shared"
```

### Example: Fuzzing cbor2

Install the extension from source:
```bash
CBOR2_BUILD_C_EXTENSION=1 python -m pip install --no-binary cbor2 cbor2==5.6.4
```

The `--no-binary` flag ensures the C extension is compiled locally with instrumentation.

Create `cbor2-fuzz.py`:
```python
import sys
import atheris

# _cbor2 ensures the C library is imported
from _cbor2 import loads

def test_one_input(data: bytes):
    try:
        loads(data)
    except Exception:
        # We're searching for memory corruption, not Python exceptions
        pass

def main():
    atheris.Setup(sys.argv, test_one_input)
    atheris.Fuzz()

if __name__ == "__main__":
    main()
```

Run:
```bash
python cbor2-fuzz.py
```

> **Important:** When running locally (not in Docker), you must [set `LD_PRELOAD` manually](https://github.com/google/atheris/blob/master/native_extension_fuzzing.md#option-a-sanitizerlibfuzzer-preloads).

## Corpus Management

### Creating Initial Corpus

```bash
mkdir corpus
# Add seed inputs
echo "test data" > corpus/seed1
echo '{"key": "value"}' > corpus/seed2
```

Run with corpus:
```bash
python fuzz.py corpus/
```

### Corpus Minimization

Atheris inherits corpus minimization from libFuzzer:
```bash
python fuzz.py -merge=1 new_corpus/ old_corpus/
```

> **See Also:** For corpus creation strategies, dictionaries, and seed selection,
> see the **fuzzing-corpus** technique skill.

## Running Campaigns

### Basic Run

```bash
python fuzz.py
```

### With Corpus Directory

```bash
python fuzz.py corpus/
```

### Common Options

```bash
# Run for 10 minutes
python fuzz.py -max_total_time=600

# Limit input size
python fuzz.py -max_len=1024

# Run with multiple workers
python fuzz.py -workers=4 -jobs=4
```

### Interpreting Output

| Output | Meaning |
|--------|---------|
| `NEW    cov: X` | Found new coverage, corpus expanded |
| `pulse  cov: X` | Periodic status update |
| `exec/s: X` | Executions per second (throughput) |
| `corp: X/Yb` | Corpus size: X inputs, Y bytes total |
| `ERROR: libFuzzer` | Crash detected |

## Sanitizer Integration

### AddressSanitizer (ASan)

AddressSanitizer is automatically integrated when using the provided Docker environment or when compiling with appropriate flags.

For local setup:
```bash
export CFLAGS="-fsanitize=address,fuzzer-no-link"
export CXXFLAGS="-fsanitize=address,fuzzer-no-link"
```

Configure ASan behavior:
```bash
export ASAN_OPTIONS="allocator_may_return_null=1,detect_leaks=0"
```

### LD_PRELOAD Configuration

For native extension fuzzing:
```bash
export LD_PRELOAD="$(python -c 'import atheris; import os; print(os.path.join(os.path.dirname(atheris.__file__), "asan_with_fuzzer.so"))')"
```

> **See Also:** For detailed sanitizer configuration, common issues, and advanced flags,
> see the **address-sanitizer** and **undefined-behavior-sanitizer** technique skills.

### Common Sanitizer Issues

| Issue | Solution |
|-------|----------|
| `LD_PRELOAD` not set | Export `LD_PRELOAD` to point to `asan_with_fuzzer.so` |
| Memory allocation failures | Set `ASAN_OPTIONS=allocator_may_return_null=1` |
| Leak detection noise | Set `ASAN_OPTIONS=detect_leaks=0` |
| Missing symbolizer | Set `ASAN_SYMBOLIZER_PATH` to `llvm-symbolizer` |

## Advanced Usage

### Tips and Tricks

| Tip | Why It Helps |
|-----|--------------|
| Use `atheris.instrument_imports()` early | Ensures all imports are instrumented for coverage |
| Start with small `max_len` | Faster initial fuzzing, gradually increase |
| Use dictionaries for structured formats | Helps fuzzer understand format tokens |
| Run multiple parallel instances | Better coverage exploration |

### Custom Instrumentation

Fine-tune what gets instrumented:
```python
import atheris

# Instrument only specific modules
with atheris.instrument_imports():
    import target_module
# Don't instrument test harness code

def test_one_input(data: bytes):
    target_module.parse(data)
```

### Performance Tuning

| Setting | Impact |
|---------|--------|
| `-max_len=N` | Smaller values = faster execution |
| `-workers=N -jobs=N` | Parallel fuzzing for faster coverage |
| `ASAN_OPTIONS=fast_unwind_on_malloc=0` | Better stack traces, slower execution |

### UndefinedBehaviorSanitizer (UBSan)

Add UBSan to catch additional bugs:
```bash
export CFLAGS="-fsanitize=address,undefined,fuzzer-no-link"
export CXXFLAGS="-fsanitize=address,undefined,fuzzer-no-link"
```

Note: Modify flags in Dockerfile if using containerized setup.

## Real-World Examples

### Example: Pure Python Parser

```python
import sys
import atheris
import json

@atheris.instrument_func
def test_one_input(data: bytes):
    try:
        # Fuzz Python's JSON parser
        json.loads(data.decode('utf-8', errors='ignore'))
    except (ValueError, UnicodeDecodeError):
        pass

def main():
    atheris.Setup(sys.argv, test_one_input)
    atheris.Fuzz()

if __name__ == "__main__":
    main()
```

### Example: HTTP Request Parsing

```python
import sys
import atheris

with atheris.instrument_imports():
    from urllib3 import HTTPResponse
    from io import BytesIO

def test_one_input(data: bytes):
    try:
        # Fuzz HTTP response parsing
        fake_response = HTTPResponse(
            body=BytesIO(data),
            headers={},
            preload_content=False
        )
        fake_response.read()
    except Exception:
        pass

def main():
    atheris.Setup(sys.argv, test_one_input)
    atheris.Fuzz()

if __name__ == "__main__":
    main()
```

## Troubleshooting

| Problem | Cause | Solution |
|---------|-------|----------|
| No coverage increase | Poor seed corpus or target not instrumented | Add better seeds, verify `instrument_imports()` |
| Slow execution | ASan overhead or large inputs | Reduce `max_len`, use `ASAN_OPTIONS=fast_unwind_on_malloc=1` |
| Import errors | Modules imported before instrumentation | Move imports inside `instrument_imports()` context |
| Segfault without ASan output | Missing `LD_PRELOAD` | Set `LD_PRELOAD` to `asan_with_fuzzer.so` path |
| Build failures | Wrong compiler or missing flags | Verify `CC`, `CFLAGS`, and clang version |

## Related Skills

### Technique Skills

| Skill | Use Case |
|-------|----------|
| **fuzz-harness-writing** | Detailed guidance on writing effective harnesses |
| **address-sanitizer** | Memory error detection during fuzzing |
| **undefined-behavior-sanitizer** | Catching undefined behavior in C extensions |
| **coverage-analysis** | Measuring and improving code coverage |
| **fuzzing-corpus** | Building and managing seed corpora |

### Related Fuzzers

| Skill | When to Consider |
|-------|------------------|
| **hypothesis** | Property-based testing with type-aware generation |
| **python-afl** | AFL-style fuzzing for Python when Atheris isn't available |

## Resources

### Key External Resources

**[Atheris GitHub Repository](https://github.com/google/atheris)**
Official repository with installation instructions, examples, and documentation for fuzzing both pure Python and native extensions.

**[Native Extension Fuzzing Guide](https://github.com/google/atheris/blob/master/native_extension_fuzzing.md)**
Comprehensive guide covering compilation flags, LD_PRELOAD setup, sanitizer configuration, and troubleshooting for Python C extensions.

**[Continuously Fuzzing Python C Extensions](https://blog.trailofbits.com/2024/02/23/continuously-fuzzing-python-c-extensions/)**
Trail of Bits blog post covering CI/CD integration, ClusterFuzzLite setup, and real-world examples of fuzzing Python C extensions in continuous integration pipelines.

**[ClusterFuzzLite Python Integration](https://google.github.io/clusterfuzzlite/build-integration/python-lang/)**
Guide for integrating Atheris fuzzing into CI/CD pipelines using ClusterFuzzLite for automated continuous fuzzing.

### Video Resources

Videos and tutorials are available in the main Atheris documentation and libFuzzer resources.
Source: Community | License: MIT